| 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||

| TRIPLETS de PYTHAGORE Illustration   
 
 
 
 
 | 
   
| 
 | |
| 25                                                                                                                        24                               25          26                                   30                               23                                                                                                                        22                                                                                                                        21                                                                                              29                      20                                                                      25                         29                19                                                                                                                        18                                                                                                                   30  17                                                                                                                        16                                                       20                                                            15                                   17                                                       25                      14                                                                                                                        13                                                                                                                        12                     13               15                              20                                         11                                                                                                                        10                                                                                                                  26  9                                                         15                                                             8                            10                                        17                                              7                                                                                                                    25  6                                     10                                                                                5                                                         13                                                            4             5                                                                                                           3                  5                                                                                                      2                                                                                                                          1                                                                                                                               1   2   3   4   5   6   7   8   9   10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | |
| Exemple:  12²
  (abscisse)
  + 5² (ordonnée) = 13² (valeur indiquée à l'intersection). On
  retrouve, bien sûr, chaque triplet et son symétrique. On observe la ligne
  oblique  5, 10, 15 … des triplets
  multiples du premier  (et la ligne
  symétrique par rapport à la diagonale). | |
| Axes 
 
 
 
 
 
 | 
 
 | ||||||||||||||||||||||||||||||
| Formule 
 
 | Valeur
  de la ligne(L) au carré plus valeur de la colonne (C) donne le carré de
  l'hypoténuse (H) L² + C² = H² H = RACINE (L² + C²) Inscrire
  H que si sa valeur est entière | ||||||||||||||||||||||||||||||
| Cellule de départ 
 
 Calcul de H 
 
 
 H entier ? 
 | 
 H = RACINE(A100*A100+B101*B101) H = RACINE($A100*$A100+B$101*B$101) RACINE($A100*$A100+B$101*B$101)
  -  TRONQUE (RACINE($A100*$A100+B$101*B$101)
  ) = 0 ? | 
| Programmation 
 
 
 Tapez
  "espace" entre les deux guillemets 
 SI(RACINE($A100*$A100+B$101*B$101) - TRONQUE
  (RACINE($A100*$A100+B$101*B$101)) = 0;RACINE($A100*$A100+B$101*B$101); "
  ") 
 
 
 
 | 
| Primitifs sur cette
  colonne | Tous sur cette
  colonne | 
| 
 Quantité de points:
  2 x 6 | 
 2 x 11 | 
| 
 2 x 18 | 
 2 x 63 | 
| 
 2 x 179 | 
 2 x 1034 | 
| Il n'est pas
  étonnant de voir une tendance à former des cercles
  (ellipses) dont l'équation est x² + y² = R. | Il n'est pas
  étonnant de voir apparaître  des droites Ce sont les
  multiples des triplets primitifs. | 
| Principe 
 
 
 
 
 
 | 
 
 | ||||||||||
| Programme Initialisation 
 
 
 
 
 
 Mise à zéro des mémoires 
 
 Recherche des triplets  
 
 
 
 
 
 
 
 
  Dessin  
 
 
 
 
 
 Décompte 
 
 | #triplets primitifs kt:= 0: mx:= 100: X:= array(1..mx): Y:= array(1..mx): for i from 1 to mx do X[i]:=0: od: for j from 1 to mx do Y[i]:=0: od: k:=1: for i from 1 to mx do for j from 1 to mx do if gcd(i,j)=1 then  
  h:=sqrt(i*i+j*j):  
  if h - trunc(h) = 0 then     
  X[k]:= i:     
  Y[k]:= j:     
  k:=k+1:     
  kt:=kt+1:  
  fi: fi:od:od: points:= { seq([X[i],Y[i]],i=1..k) }: pointplot(points, axes=BOXED,          
  color=red, symbol=box): kt; | 

| Voir | 
 
 | 
| Site | 
 
 | 
| Cette page | 
 | 
