Accueil

Orientation générale

Barre de recherche

DicoNombre

DicoMot Math

DicoCulture

Atlas des maths

Rubriques

Index alphabétique

Nouveautés

Actualités

Références

Édition du: 09/04/2025

M'écrire

Brèves de Maths

 

Débutant 

Glossaire

Types de nombres

Nom des nombres

Écriture des nombres

Table des facteurs

Langues

Dictionnaire des Nombres

0 / 0,… / 1 /
 10 / 50 / 100 / 200

300 à 399

400 / 500 /  600 / 700 / 800 / 900 / 1 000 / 2 000 /

5 000 / 10 000 / 100 000 / 106 / 109  / 10100

300

310

320

330

340

350

360

370

380

390

330

331

332

333

334

335

336

337

338

339

 

   

 

 

 

 

*      Trois-cent-trente

*      Three hundred thirty

Nouvelle orthographe 

avec des traits d'union partout

Facteurs

Binaire

1 0100 1010

Bases

FF21  BB29

Romain

CCC XXX

 Suite

*      Abondant

*      Composé

*      Congruent

*      Curzon

*      Faiblement totient

*      Fourchette ou gapful

*      Gilda

*      Harshad

*      Idonéal

*      Pair

*      Pratique

*      Semi-parfait

*      Zumkeller

 

Géométrique

*      Pascal

*      Pentagonal (15)

*      Pentatope

 

Chiffres et numération

330

*      Divisible par ses chiffres et par tout sous-ensemble de ses chiffres.

 

Addition et soustraction

330 = 7 + 8 + … + 26

*      Une des sept sommes de nombres consécutifs >>>

330 = 163 + 167

        = 43 +  47 +  53 +  59 +  61 +  67

*      Sommes de nombres premiers consécutifs.

330 = 1x2 + 2x3 + …+ 9x10

*      Somme des nombres oblongs.

 

Multiplication et division

330 / 66 = 5

*      Il y a 66 nombres premiers jusqu'à 330.

*      Exactement un nombre sur cinq. Même proportion pour 335, 340, 350, 355, et 360.

*      Le produit de quatre nombres consécutifs est divisible par 24. Tous ces nombres figurent dans la cinquième diagonale du triangle de Pascal.

330, 331, 661, 991, 1321

 

1530, 1531, 3061, 4591, 6121

*      Ces nombres n sont tels que n+1, 2n+1, 3n+1 et 4n+1 sont premiers.

Liste: 330, 1530, 3060, 4260, 4950, 6840, 10830, 15390, 18120, 23010, 25410, 26040, 31770, 33300, 40110, 41490, 45060, 49830, 53880, 59340, 65850, 70140, 73770, 78540, 88740, 95460, 96930, … OEIS A237189

 

*      Nombre égal à cinq fois la quantité de premiers qui lui sont inférieurs. Le plus petit cas.

Liste des nombres : 330, 335, 340, 350, 355, 360.

 

Avec les puissances

330 = 4² + 5² + 17²
= 5² + 7² + 16²

*      Deux seules sommes de trois carrés  >>>

330 = 6² + 7² + 8² + 9² + 10²

*      Somme de carrés de nombres consécutifs;
Toujours divisible par 5.

330 = 4² + 5² + 17²

        = 5² + 7² + 16²

*      Deux fois sommes de trois carrés.

330 = 23 + 23 + 43 + 53 + 53

*      Somme de cubes.

*      Le nombre 330 est le plus petit qui ne peut pas s'écrire comme la somme de, exactement, sept nombres distincts au carré.

Voir Nombre 390

 

Précédents: 318, 306, 286, 282, 266, 261, 258, 255, 253,250, 249 …

 

En puissance

3303 = 113 + 123 + … + 1093

        = 35 937 000

*      Cube somme de cubes consécutifs.

Voir Table des cubes somme de cubes

 

Jeux & Combinatoire

*      Coefficient du binôme ou nombre de Pascal.
Quantité de combinaisons de 4 ou 7 parmi 11.

330

*      Points d'intersection des diagonales de l'hendécagone.

 

Culture

Géométrie

*      330 intersections de diagonales dans le polygone à 11 côtés

>>>

Transport

*      A 330 Avion Airbus

Mis en service en 1994; autour de 300 places.

>>>

Physique

*      330 m / s Vitesse du son dans l'air (1 500 m/s dans l'eau).

>>>

 

 

Identité détaillée

Voir Diviseurs,  Quantité, Somme, Fonctions arithmétiques

 

 

Numération: base, [chiffres]

Repdigit (Brésilien)

2, [1, 0, 1, 0, 0, 1, 0, 1, 0]

3, [1, 1, 0, 0, 2, 0]

4, [1, 1, 0, 2, 2]

5, [2, 3, 1, 0]

6, [1, 3, 1, 0]

7, [6, 5, 1]

8, [5, 1, 2]

9, [4, 0, 6]

10, [3, 3, 0]

11, [2, 8, 0]

12, [2, 3, 6]

13, [1, 12, 5]

14, [1, 9, 8]

15, [1, 7, 0]

16, [1, 4, 10]

17, [1, 2, 7]

18, [1, 0, 6]

19, [17, 7]

20, [16, 10]

21, [15, 15]

22, [15, 0]

23, [14, 8]

24, [13, 18]

25, [13, 5]

26, [12, 18]

27, [12, 6]

28, [11, 22]

29, [11, 11]

30, [11, 0]

60, [5, 30]

21, [15, 15]

29, [11, 11]

32, [10, 10]

54, [6, 6]

65, [5, 5]

109, [3, 3]

164, [2, 2]

329, [1, 1]

Voir Bases / Brésiliens

 

 

Retour

Suite

*      Nombres en 320

*      Nombres en 340

Voir

*      Nom des nombres

*      Nombres géométriques

Voir

*      Nombres par leur nom

*      Empreinte des nombres

*      DicoNombre Junior

*      Historique de ce site et Références

*      Maitres en nombres  

 

Cette page

http://villemin.gerard.free.fr/NombDico/N100a500/Nomb300/Nb330.htm