Édition du: 18/12/2020 |
INDEX |
Types de Nombres – Diviseurs |
|||
Semi-parfaits (SP) |
||||
NOMBRES INCONSOMMABLES Nombres panconsommables Nombres cousins
des nombres de Harshad
qui sont divisibles
par la somme de leurs chiffres. Ici, on cherche
quels sont les nombres qui sont de tels quotients. Autrement-dit:
quels sont les nombres n atteignables par la division
exacte d'un nombre k par la somme de ses chiffres. Généralisation à toutes
les bases
b. |
||
|
Sommaire de cette page >>> Définitions avec des exemples >>> Consommables en base 10 pour n jusqu'à 100 >>> Exemples de panconsommables >>> Listes |
Débutants Glossaire |
Anglais: Inconsummate numbers
Consommable
et inconsommable Selon une
définition de John Conway |
Le nombre
47 est consommable en base 10, car il existe au moins un nombre, tel que
divisé par la somme de ses chiffres on trouve 47:
423 / (4 + 2 +
3) = 423 / 9 = 47
846 / (8 + 6 +
4) = 846 / 18 = 47 Le nombre
62 est inconsommable car il n'est mais le résultat de la division d'un nombre
par la somme de ses chiffres. |
|
Panconsommable |
Nombre
consommable dans toutes les bases. Le nombre
5 est panconsommable:
10 = 10102
et 10 / (1 + 0 + 1 + 0) = 5
10 = 1013
et 10 / (1 + 0 + 1) = 5 (vrai pour: 10 15, 20 et 25)
30 = 1324
et 30 / (1 + 3 + 2) = 5 |
|
Voisins |
Les
nombres de Harshad
sont ceux qui sont divisibles par la somme de leurs propres chiffres. |
|
Nombre n atteint par un nombre k divisé par la
somme de ses chiffres. Pour k < 1 000 Ceux non atteints |
[2, 18], [3, 27], [4, 12], [5, 45], [6, 54], [7, 21],
[8, 72], [9, 81], [10, 10], [11, 198], [12, 108], [13, 117], [14, 126], [15,
135], [16, 144], [17, 153], [18, 162], [19, 114], [20, 180], [21, 378], [22,
132], [23, 207], [24, 216], [25, 150], [26, 234], [27, 243], [28, 112], [29,
261], [30, 270], [31, 372], [32, 576], [33, 594], [34, 102], [35, 315], [36,
324], [37, 111], [38, 342], [39, 351], [40, 120], [41, 738], [42, 756], [43,
516], [44, 792], [45, 405], [46, 230], [47, 423], [48, 432], [49, 441], [50,
450], [51, 918], [52, 312], [53, 954], [54, 972], [55, 110], [56, 504], [57,
513], [58, 522], [59, 531], [60, 540], [61, 732], [64, 320], [67, 201], [68,
612], [69, 621], [70, 210], [73, 511], [76, 912], [78, 702], [79, 711], [80,
720], [82, 410], [85, 510], [89, 801], [90, 810], [91, 910], [100, 100] 62, 63, 65, 66, 71, 72, 74, 75, 77, 81, 83, 84, 86, 87, 88, 92, 93,
94, 95, 96, 97, 98, 99 |
|
Pour k < 1 000 000 Ceux non atteints |
[66, 1188], [71, 1278], [72, 1296], [74, 1998],
[77, 1386], [81, 1458], [83, 1494], [86, 1548], [87, 1566], [88, 1056], [92,
1656], [93, 1674], [94, 1128], [96, 1728], [97, 1164], [98, 1764], [99, 1782] 62, 63, 65, 75, 84, 95 >>> |
|
Table pour les nombre d e1 à 15 Toutes les possibilités d'atteindre un nombre n de 1 à 15
par la division d'un nombre k par la somme de ses chiffres en base b. Exemple avec la première ligne: 3, 6,
2, [0, 1,
1], 2, 3 Toutes les bases: on vérifie
si le nombre est atteint par un nombre k dans chacune des bases de 2 à n – 1,
si oui, la dernière base est notée en rouge. C'est le cas jusqu'à 12. Avec le
nombre 13, il y des manques (bases 2 et 6); ce nombre n'est pas
panconsommable. |
|||
n, k, b, [k base b], s, q 3, 6, 2,
[0, 1, 1], 2,
3 4, 4, 2,
[0, 0, 1], 1, 4 4, 16, 3,
[1, 2, 1],
4, 4 5, 10, 2,
[0, 1, 0, 1], 2, 5 5, 10, 3,
[1, 0, 1],
2, 5 5, 15, 3,
[0, 2, 1],
3, 5 5, 20, 3,
[2, 0, 2],
4, 5 5, 25, 3,
[1, 2, 2],
5, 5 5, 30, 4, [2, 3, 1],
6, 5 6, 12, 2,
[0, 0, 1, 1], 2, 6 6, 12, 3,
[0, 1, 1],
2, 6 6, 24, 3,
[0, 2, 2],
4, 6 6, 18, 4,
[2, 0, 1],
3, 6 6, 48, 5, [3,
4, 1], 8, 6 7, 21, 2,
[1, 0, 1, 0, 1],
3, 7 7, 21, 3,
[0, 1, 2],
3, 7 7, 35, 3,
[2, 2, 0, 1], 5, 7 7, 21, 4,
[1, 1, 1],
3, 7 7, 28, 4,
[0, 3, 1],
4, 7 7, 35, 4,
[3, 0, 2],
5, 7 7, 42, 4,
[2, 2, 2],
6, 7 7, 63, 4,
[3, 3, 3],
9, 7 7, 28, 5,
[3, 0, 1],
4, 7 7, 42, 5,
[2, 3, 1],
6, 7 7, 70, 6, [4,
5, 1], 10,
7 8, 8, 2,
[0, 0, 0, 1], 1, 8 8, 32, 3,
[2, 1, 0, 1], 4, 8 8, 24, 4,
[0, 2, 1],
3, 8 8, 32, 5,
[2, 1, 1],
4, 8 8, 64, 5,
[4, 2, 2],
8, 8 8, 40, 6,
[4, 0, 1],
5, 8 8, 96, 7,
[5, 6, 1],
12, 8 9, 18, 2,
[0, 1, 0, 0, 1],
2, 9 9, 9, 3,
[0, 0, 1], 1, 9 9, 18, 3,
[0, 0, 2],
2, 9 9, 54, 4,
[2, 1, 3],
6, 9 9, 27, 5,
[2, 0, 1],
3, 9 9, 36, 5,
[1, 2, 1],
4, 9 9, 45, 5,
[0, 4, 1],
5, 9 9, 54, 5,
[4, 0, 2],
6, 9 9, 63, 5,
[3, 2, 2],
7, 9 9, 72, 5,
[2, 4, 2],
8, 9 9, 99, 5,
[4, 4, 3],
11, 9 9, 45, 6,
[3, 1, 1],
5, 9 9, 54, 7,
[5, 0, 1],
6, 9 9, 81, 7,
[4, 4, 1],
9, 9 9, 126, 8, [6,
7, 1], 14, 9 10, 20, 2,
[0, 0, 1,
0, 1], 2,
10 10, 40, 3,
[1, 1, 1,
1], 4, 10 10, 80, 3,
[2, 2, 2,
2], 8, 10 10, 20, 4,
[0, 1, 1],
2, 10 10, 40, 4,
[0, 2, 2],
4, 10 |
10, 50, 4,
[2, 0, 3],
5, 10 10, 60, 4,
[0, 3, 3],
6, 10 10, 40, 5,
[0, 3, 1],
4, 10 10, 50, 6,
[2, 2, 1],
5, 10 10, 100, 6,
[4, 4, 2],
10, 10 10, 60, 7,
[4, 1, 1],
6, 10 10, 80, 7,
[3, 4, 1],
8, 10 10, 70, 8,
[6, 0, 1],
7, 10 10, 160, 9, [7,
8, 1], 16,
10 11, 55, 2,
[1, 1, 1, 0, 1, 1], 5, 11 11, 33, 3,
[0, 2, 0,
1], 3, 11 11, 77, 3,
[2, 1, 2,
2], 7, 11 11, 33, 4,
[1, 0, 2],
3, 11 11, 66, 5,
[1, 3, 2],
6, 11 11, 88, 5,
[3, 2, 3],
8, 11 11, 44, 6,
[2, 1, 1],
4, 11 11, 55, 6,
[1, 3, 1],
5, 11 11, 66, 6,
[0, 5, 1],
6, 11 11, 77, 6,
[5, 0, 2],
7, 11 11, 88, 6,
[4, 2, 2],
8, 11 11, 99, 6,
[3, 4, 2],
9, 11 11, 66, 7,
[3, 2, 1],
6, 11 11, 77, 8,
[5, 1, 1],
7, 11 11, 88, 9,
[7, 0, 1],
8, 11 11, 132, 9,
[6, 5, 1],
12, 11 11, 198, 10, [8,
9, 1], 18,
11 12, 24, 2,
[0, 0, 0,
1, 1], 2,
12 12, 48, 3,
[0, 1, 2,
1], 4, 12 12, 36, 4,
[0, 1, 2],
3, 12 12, 96, 5, [1,
4, 3], 8,
12 12, 60, 6,
[0, 4, 1],
5, 12 12, 72, 7,
[2, 3, 1],
6, 12 12, 84, 8,
[4, 2, 1],
7, 12 12, 96, 9,
[6, 1, 1],
8, 12 12, 108, 10,
[8, 0, 1],
9, 12 12, 240, 11,
[9, 10, 1],
20, 12 13 2 / 13, 39, 3,
[0, 1, 1,
1], 3, 13 13, 65, 3,
[2, 0, 1,
2], 5, 13 13, 78, 3,
[0, 2, 2,
2], 6, 13 13, 52, 4,
[0, 1, 3],
4, 13 13, 78, 4,
[2, 3, 0,
1], 6, 13 13, 91, 4,
[3, 2, 1,
1], 7, 13 13, 26, 5,
[1, 0, 1],
2, 13 13, 52, 5,
[2, 0, 2],
4, 13 13, 65, 5,
[0, 3, 2],
5, 13 13, 78, 5,
[3, 0, 3],
6, 13 13, 91, 5,
[1, 3, 3],
7, 13 3 6 / 13, 52, 7,
[3, 0, 1],
4, 13 13, 65, 7,
[2, 2, 1],
5, 13 13, 78, 7,
[1, 4, 1],
6, 13 |
13, 91, 7,
[0, 6, 1],
7, 13 13, 91, 8,
[3, 3, 1],
7, 13 13, 182, 8,
[6, 6, 2],
14, 13 13, 104, 9,
[5, 2, 1],
8, 13 13, 130, 9,
[4, 5, 1],
10, 13 13, 156, 9,
[3, 8, 1],
12, 13 13, 117, 10,
[7, 1, 1],
9, 13 13, 156, 10,
[6, 5, 1],
12, 13 13, 195, 10,
[5, 9, 1],
15, 13 13, 130, 11,
[9, 0, 1],
10, 13 13, 195, 11,
[8, 6, 1],
15, 13 13, 286, 12,
[10, 11, 1],
22, 13 14, 42, 2,
[0, 1, 0, 1, 0, 1], 3, 14 14, 28, 3,
[1, 0, 0,
1], 2, 14 14, 56, 3,
[2, 0, 0,
2], 4, 14 14, 56, 5,
[1, 1, 2],
4, 14 14, 84, 7,
[0, 5, 1],
6, 14 14, 98, 8,
[2, 4, 1],
7, 14 14, 112, 9,
[4, 3, 1],
8, 14 14, 224, 9,
[8, 6, 2],
16, 14 14, 126, 10,
[6, 2, 1],
9, 14 14, 140, 11,
[8, 1, 1],
10, 14 14, 154, 12,
[10, 0, 1],
11, 14 14, 336, 13, [11,
12, 1], 24,
14 15, 60, 2,
[0, 0, 1, 1, 1, 1], 4, 15 15, 30, 3,
[0, 1, 0,
1], 2, 15 15, 45, 3,
[0, 0, 2,
1], 3, 15 15, 60, 3,
[0, 2, 0,
2], 4, 15 15, 75, 3,
[0, 1, 2,
2], 5, 15 15, 90, 4,
[2, 2, 1,
1], 6, 15 15, 30, 5,
[0, 1, 1],
2, 15 15, 60, 5,
[0, 2, 2],
4, 15 15, 90, 5,
[0, 3, 3],
6, 15 15, 75, 6,
[3, 0, 2],
5, 15 15, 75, 8,
[3, 1, 1],
5, 15 15, 90, 8,
[2, 3, 1],
6, 15 15, 105, 8,
[1, 5, 1],
7, 15 15, 120, 8,
[0, 7, 1],
8, 15 15, 135, 8,
[7, 0, 2],
9, 15 15, 150, 8,
[6, 2, 2],
10, 15 15, 165, 8,
[5, 4, 2],
11, 15 15, 180, 8,
[4, 6, 2],
12, 15 15, 255, 8,
[7, 7, 3],
17, 15 15, 120, 9,
[3, 4, 1],
8, 15 15, 240, 9,
[6, 8, 2],
16, 15 15, 135, 10,
[5, 3, 1],
9, 15 15, 150, 11,
[7, 2, 1],
10, 15 15, 225, 11,
[5, 9, 1], 15,
15 15, 165, 12,
[9, 1, 1],
11, 15 15, 180, 13,
[11, 0, 1],
12, 15 15, 270, 13,
[10, 7, 1],
18, 15 15, 390, 14, [12,
13, 1], 26,
15 |
|
Inconsommables en base 10 (décimal) |
62, 63, 65, 75, 84, 95, 161, 173, 195, 216, 261, 266, 272,
276, 326, 371, 372, 377, 381, 383, 386, 387, 395, 411, 416, 422, 426, 431,
432, 438, 441, 443, 461, 466, 471, 476, 482, 483, 486, 488, 491, 492, 493,
494, 497, 498, 516, 521, 522, 527, 531, 533, 536 |
|
Inconsommables en base 2 (binaire) |
13, 19, 25, 26, 35, 38, 47, 49, 50, 52, 55, 67, 70, 76, 94,
95, 97, 98, 100, 103, 104, 109, 110, 115, 117, 131, 134, 140, 151, 152, 157,
159, 171, 175, 179, 183, 185, 187, 188, 190, 193, 194, 196, 199, 200, 203,
206, 208, 217, 218, 220, 227, 229 |
|
Plus
petit inconsommables en base b C'est 13 en binaire ou 62
en décimal |
13, 17, 29, 16, 27, 30, 42, 46, 62,
68, 86, 92, 114, 122, 147, 154, 182, 192, 222, 232, 266, 278, 314, 326, 367,
380, 422, 436, 482, 498, 546, 562, 614, 632, 688, 704, 762, 782, 842, 862,
926, 948, 1014, 1036, 1107, 1130, 1202, 1226, 1302, 1328, 1406, 1432 |
|
Inconsommables pour certaines
bases |
13, 16, 17, 19, 22, 25, 26, 27, 28, 29, 30, 32, 33, 35, 38,
41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 55, 56, 58, 60, 62, 63, 64, 65, 66, 67, 68, 70, 71, 74, 75, 76, 79,
80, 82, 83, 84, 86, 87, 88, 90, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,
102, 103, 104, 105 |
|
Panconsommables Liste
probablement complète avec ces 66 nombres |
1,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 18, 20, 21, 23, 24, 31, 34, 36,
37, 39, 40, 43, 45, 53, 54, 57, 59, 61, 69, 72, 73, 77, 78, 81, 85, 89, 91,
121, 127,
144, 166, 169, 211, 219, 231, 239, 257, 267, 271, 331, 337, 353, 361, 413,
481, 523, 571, 661, 721, 1093,
1291,
3097. |
|
Retour |
|
Suite |
|
Voir |
Liens en haut de page |
DicoNombre |
|
Sites |
Inconsummate
numbers – Numbers aplenty
Panconsummate
numbers – Numbers aplenty
OEIS A003635 – Inconsummate numbers
in base 10: no number is this multiple of the sum of its digits (in base 10)
OEIS A058898 – Inconsummate numbers
in base 2: no number is this multiple of the sum of its digits (in base 2)
OEIS A058906 – Inconsummate numbers
in base 11: no number is this multiple of the sum of its digits (in base 11)
OEIS A052491 – Smallest
"inconsummate number" in base n: smallest number such that in base
n, no number is this multiple of the sum of its digits
OEIS A058225 – Numbers that are
inconsummate to some base OEIS A058226
–
Panconsummate numbers (consummate in all bases >=2) |
Cette page |
http://villemin.gerard.free.fr/aNombre/TYPDIVIS/Consomma.htm
|