Édition du: 22/11/2024 |
INDEX |
Types de Nombres – Sommes |
|||
|
Faites un double-clic pour un retour en haut de page
NOMBRES obstinés, détendus et souples Nombres sommes
d'un nombre impair et d'une puissance de 2. |
||
|
Sommaire de cette page >>> Le |
Débutants Glossaire |
Nombres
obstinés |
|||
Obstiné ou souple Un nombre
obstiné est un nombre impair qui n'est pas
somme
d'un nombre premier et
d'une puissance de 2. Sinon, il est
souple. Notez que si k = 1 et N est premier, nous sommes en présence de nombres premiers jumeaux. |
Nombre obstiné |
||
Exemples |
Le nombre 5, impair, n'est pas obstiné : 5 = 3 + 2 ; il est SOUPLE.
Le nombre 7, impair, n'est doublement pas obstiné : 7 = 5 + 2 = 3 +
2² ; il est SOUPLE.
Le nombre 905 est le nombre OBSTINÉ le plus petit.
Le nombre 4, pair est bien égal à 2 + 2, il ni
obstiné, ni souple, il est DÉTENDU. |
||
Liste |
||
Nombres de 3 à 13 |
|
|
Liste des nombres obstinés |
1, 3, 127,
149, 251, 331, 337, 373, 509, 599, 701, 757, 809, 877, 905, 907, 959, 977, 997, 1019, 1087, 1199,
1207, 1211, 1243, 1259, 1271, 1477, 1529, 1541, 1549, 1589, 1597, 1619, 1649,
1657, 1719, 1759, 1777, 1783, 1807, 1829, 1859, 1867, 1927, 1969, 1973, … |
|
Liste des nombres obstinés
composés |
905 = 5 x 181 905,
959, 1199, 1207, 1211, 1243, 1271, 1477, 1529, 1541, 1589, 1649, 1719, 1807,
1829, 1969, 1985, 2171, ... |
|
Programmation |
||
Programme Maxima |
But Produire la liste des nombres obstinés composés. Commentaires Reset pour initialiser le programme. Exemple de sortie de 905 à 1243 |
|
Haut de page (ou
double-clic)
Suite |
Somme-Produit
des chiffres – Index |
Voir |
|
Sites |
OEIS A133122 – Odd
numbers which cannot be written as the sum of an odd prime and 2^i with i
> 0. |
Cette page |