| 
 |||||||||||||||||||||||||||||||||||
![]()
| 
   
  | 
 |||
| 
   Nombres
  consécutifs dont les sommes des chiffres (SC) sont divisibles par des nombres
  consécutifs ou identiques. Liste: n, n+1, SC(n), SC(n+1), [d1, d2] Exemple: SC(189)
  = 18 divisible par 6   et   SC(190) = 10 divisible par 5. Les suivants (en rose) du même type);
  espacés de 90.  | 
 |||
| 
   8, 9, 8,
  9, [4, 3] 17, 18, 8,
  9, [4, 3] 26, 27, 8,
  9, [4, 3] 35, 36, 8,
  9, [4, 3] 44, 45, 8,
  9, [4, 3] 53, 54, 8,
  9, [4, 3] 62, 63, 8,
  9, [4, 3] 71, 72, 8,
  9, [4, 3] 78, 79, 15, 16, [3, 4] 79, 80,
  16, 8, [4, 4] 80, 81, 8, 9, [4, 3] 87, 88,
  15, 16, [3, 4] 96, 97,
  15, 16, [3, 4] 107, 108,
  8, 9, [4, 3] 116, 117,
  8, 9, [4, 3] 125, 126,
  8, 9, [4, 3] 134, 135,
  8, 9, [4, 3] 143, 144,
  8, 9, [4, 3] 152, 153,
  8, 9, [4, 3] 161, 162,
  8, 9, [4, 3] 168, 169, 15, 16, [3, 4] 169,
  170, 16, 8, [4, 4] 170, 171, 8, 9, [4, 3] 177, 178,
  15, 16, [3, 4] 186, 187,
  15, 16, [3, 4]  | 
  
   189,
  190, 18, 10, [6, 5] 195, 196,
  15, 16, [3, 4] 206, 207,
  8, 9, [4, 3] 215, 216,
  8, 9, [4, 3] 224, 225,
  8, 9, [4, 3] 233, 234,
  8, 9, [4, 3] 242, 243,
  8, 9, [4, 3] 251, 252,
  8, 9, [4, 3] 258, 259,
  15, 16, [3, 4] 259, 260,
  16, 8, [4, 4] 260, 261,
  8, 9, [4, 3] 267, 268,
  15, 16, [3, 4] 276, 277,
  15, 16, [3, 4] 279,
  280, 18, 10, [6, 5] 285, 286, 15,
  16, [3, 4] 294, 295,
  15, 16, [3, 4] 305, 306,
  8, 9, [4, 3] 314, 315,
  8, 9, [4, 3] 323, 324,
  8, 9, [4, 3] 332, 333,
  8, 9, [4, 3] 341, 342,
  8, 9, [4, 3] 348, 349,
  15, 16, [3, 4] 349, 350,
  16, 8, [4, 4] 350, 351,
  8, 9, [4, 3] 357, 358,
  15, 16, [3, 4]  | 
  
   366, 367,
  15, 16, [3, 4] 369,
  370, 18, 10, [6, 5] 375, 376,
  15, 16, [3, 4] 384, 385,
  15, 16, [3, 4] 389, 390,
  20, 12, [4, 3] 393, 394,
  15, 16, [3, 4] 398, 399,
  20, 21, [4, 3] 404, 405,
  8, 9, [4, 3] 413, 414,
  8, 9, [4, 3] 422, 423,
  8, 9, [4, 3] 431, 432, 8,
  9, [4, 3] 438, 439,
  15, 16, [3, 4] 439, 440,
  16, 8, [4, 4] 440, 441,
  8, 9, [4, 3] 447, 448,
  15, 16, [3, 4] 456, 457,
  15, 16, [3, 4] 459,
  460, 18, 10, [6, 5] 465, 466,
  15, 16, [3, 4] 474, 475,
  15, 16, [3, 4] 479, 480,
  20, 12, [4, 3] 483, 484,
  15, 16, [3, 4] 488, 489,
  20, 21, [4, 3] 492, 493,
  15, 16, [3, 4] 497, 498,
  20, 21, [4, 3]  | 
 |
| 
   Cas
  6, 5 189, 190,
  18, 10, [6, 5] 279, 280,
  18, 10, [6, 5] 369, 370,
  18, 10, [6, 5] 459, 460,
  18, 10, [6, 5] 549, 550,
  18, 10, [6, 5] 639, 640,
  18, 10, [6, 5] 729, 730, 18,
  10, [6, 5] 819, 820,
  18, 10, [6, 5] 909, 910,
  18, 10, [6, 5] 1089,
  1090, 18, 10, [6, 5] 1179,
  1180, 18, 10, [6, 5] 1269,
  1270, 18, 10, [6, 5]  | 
  
   Cas
  10, 11 (seul après 6, 5) 4989,
  4990, 30, 22, [10, 11] 5889,
  5890, 30, 22, [10, 11] 5979,
  5980, 30, 22, [10, 11] 6789,
  6790, 30, 22, [10, 11] 6879,
  6880, 30, 22, [10, 11] 6969,
  6970, 30, 22, [10, 11] 7689,
  7690, 30, 22, [10, 11] 7779,
  7780, 30, 22, [10, 11] 7869,
  7870, 30, 22, [10, 11] 7959,
  7960, 30, 22, [10, 11] 8589,
  8590, 30, 22, [10, 11] 8679, 8680,
  30, 22, [10, 11] 8769,
  8770, 30, 22, [10, 11] 8859,
  8860, 30, 22, [10, 11] 8949,
  8950, 30, 22, [10, 11] 9489,
  9490, 30, 22, [10, 11] 9579,
  9580, 30, 22, [10, 11] 9669,
  9670, 30, 22, [10, 11] 9759,
  9760, 30, 22, [10, 11] 9849,
  9850, 30, 22, [10, 11] 9939,
  9940, 30, 22, [10, 11]  | 
  
   Rienau-delà Cas7,
  7 69999,
  70000, 42, 7,  159999,
  160000, 42, 7,  249999,
  250000, 42, 7,  339999,
  340000, 42, 7,  429999,
  430000, 42, 7,  519999,
  520000, 42, 7,  589999,
  590000, 49, 14,  609999,
  610000, 42, 7,  679999,
  680000, 49, 14,  769999,
  770000, 49, 14,  859999,
  860000, 49, 14,  949999,
  950000, 49, 14,   | 
 |
 
| 
   
  | 
 |
| 
   On donne la quantité de nombres harshads
  par tranche de centaines.  Avec le cumul, on calcule le ratio nombres harshads sur
  nombres naturels. 
  | 
 |
 
| 
    Liste de grands nombres HARSHADS 1 000 000 < N < 1000 100  | 
  
   
  | 
 
| 
   En présence de zéros, quantité appréciable de nombres harshads. 
  | 
 |
 
| 
   Liste
  de grands nombres HARSHADS 999 900 < N <
  1000 000  | 
  
   
  | 
 
| 
   Effectivement beaucoup moins de nombres harshad dans
  les plages de nombres sans chiffre zéro.  Et, une somme de chiffres qui croît (ici > 36) 
    | 
 |
 
 
![]()
| 
   Retour  | 
  |
| 
   Suite  | 
  |
| 
   Voir  | 
  
  
  
  
   
 
  | 
 
| 
   Cette page  | 
  
   http://villemin.gerard.free.fr/Wwwgvmm/Decompos/HarshadQ.htm     | 
 
![]()