Édition du: 19/04/2025 |
INDEX |
Nombres divisibles par ses chiffres |
||
Harshad
(somme) |
Zuckerman
(produit) |
||
Insolites
(som/prod) |
Fourchette
(extrémités) |
||
Lynch-Bell (mod 0) |
Faites un double-clic pour un retour en haut de page
NOMBRES divisibles par ses chiffres mod 1 ou mod k Nombre qui divisé par chacun de ses chiffres produit un reste d'une
unité. |
||
|
Sommaire de cette page >>> Cas des restes unités >>> Cas des restes égaux à 2 >>> Cas des restes égaux à 3 >>> Cas des restes égaux à k |
Débutants Glossaire |
Nombre divisibles par ses chiffres
mod 1 Nombre qui divisé par chacun de ses chiffres produit
un reste d'une unité. 289 = 2 × 144 + 1 ≡ 1 mod 2 |
Divisions posées avec chacun des
chiffres |
||
Liste Tous ces nombres sont divisibles par chacun de
leurs chiffres avec un reste unité. Chaque ligne précise:
On exclut de cette liste:
|
Chiffres répétés admis [223, 1, [3, 74], [2, 111], [2, 111]] [289, 1, [9, 32], [8, 36], [2, 144]] [337, 1, [7, 48], [3, 112], [3, 112]] [379, 1, [9, 42], [7, 54], [3, 126]] [433, 1, [3, 144], [3, 144], [4, 108]] [469, 1, [9, 52], [6, 78], [4, 117]] [477, 1, [7, 68], [7, 68], [4, 119]] [649, 1, [9, 72], [4, 162], [6, 108]] [673, 1, [3, 224], [7, 96], [6, 112]] [2227, 1, [7, 318], [2, 1113], [2, 1113], [2,
1113]] [2233, 1, [3, 744], [3, 744], [2, 1116], [2,
1116]] [2263, 1, [3, 754], [6, 377], [2, 1131], [2, 1131]] [2269, 1, [9, 252], [6, 378], [2, 1134], [2,
1134]] [2323, 1, [3, 774], [2, 1161], [3, 774], [2,
1161]] [2437, 1, [7, 348], [3, 812], [4, 609], [2,
1218]] [2449, 1, [9, 272], [4, 612], [4, 612], [2,
1224]] [2623, 1, [3, 874], [2, 1311], [6, 437], [2,
1311]] [2629, 1, [9, 292], [2, 1314], [6, 438], [2,
1314]] [2773, 1, [3, 924], [7, 396], [7, 396], [2,
1386]] [2833, 1, [3, 944], [3, 944], [8, 354], [2,
1416]] [3223, 1, [3, 1074], [2, 1611], [2, 1611], [3,
1074]] |
||
Idem Tous les chiffres sont distincts. Jusqu'à 100 000. |
Chiffres distincts [289, 1, [9, 32], [8,
36], [2, 144]] [379, 1, [9, 42], [7,
54], [3, 126]] [469, 1, [9, 52], [6,
78], [4, 117]] [649, 1, [9, 72], [4,
162], [6, 108]] [673, 1, [3, 224], [7,
96], [6, 112]] [2437,
1, [7, 348], [3, 812], [4, 609], [2, 1218]] [4873, 1, [3, 1624], [7, 696], [8, 609], [4,
1218]] [23689, 1, [9, 2632], [8, 2961], [6, 3948], [3,
7896], [2, 11844]] [24697, 1, [7, 3528], [9, 2744], [6, 4116], [4,
6174], [2, 12348]] [27469, 1, [9, 3052], [6, 4578], [4, 6867], [7,
3924], [2, 13734]] [28369, 1, [9, 3152], [6, 4728], [3, 9456], [8,
3546], [2, 14184]] [32689, 1, [9, 3632], [8, 4086], [6, 5448], [2,
16344], [3, 10896]] [36289, 1, [9, 4032], [8, 4536], [2, 18144], [6,
6048], [3, 12096]] [42673, 1, [3, 14224], [7, 6096], [6, 7112], [2,
21336], [4, 10668]] [46873, 1, [3, 15624], [7, 6696], [8, 5859], [6,
7812], [4, 11718]] [47629, 1, [9, 5292], [2, 23814], [6, 7938], [7,
6804], [4, 11907]] [62497, 1, [7, 8928], [9, 6944], [4, 15624], [2,
31248], [6, 10416]] [62749, 1, [9, 6972], [4, 15687], [7, 8964], [2,
31374], [6, 10458]] [63289, 1, [9, 7032], [8, 7911], [2, 31644], [3,
21096], [6, 10548]] [68329, 1, [9, 7592], [2, 34164], [3, 22776], [8,
8541], [6, 11388]] [82369, 1, [9, 9152], [6, 13728], [3, 27456], [2,
41184], [8, 10296]] [84673, 1, [3, 28224], [7, 12096], [6, 14112],
[4, 21168], [8, 10584]] [86329, 1, [9, 9592], [2, 43164], [3, 28776], [6,
14388], [8, 10791]] |
||
Les plus petits cas à k chiffres
distincts On ne considère que les nombres à chiffres
distincts, et autres que 0 et 1. |
3, [289, 1, [9, 32], [8,
36], [2, 144]] 4, [2437,
1, [7, 348], [3, 812], [4, 609], [2, 1218]] 5, [23689, 1, [9, 2632], [8,
2961], [6, 3948], [3, 7896], [2, 11844]] 6, [348769, 1, [9, 38752],
[6, 58128], [7, 49824], [8, 43596], [4, 87192], [3, 116256]] |
||
Nombre divisibles par ses chiffres
mod 2 Nombre qui divisé par chacun de ses chiffres
produit un reste égal à 2. Chiffres distincts et hors 0 et 1. |
[2, 2, [2, 0]] [26, 2, [6, 4], [2, 12]] [32, 2, [2, 15], [3, 10]] [42, 2, [2, 20], [4, 10]] [52, 2, [2, 25], [5, 10]] [62, 2, [2, 30], [6, 10]] [72, 2, [2, 35], [7, 10]] [82, 2, [2, 40], [8, 10]] [92, 2, [2, 45], [9, 10]] [236, 2, [6, 39], [3, 78], [2, 117]] [326, 2, [6, 54], [2, 162], [3, 108]] [362, 2, [2, 180], [6, 60], [3, 120]] [386, 2, [6, 64], [8, 48], [3, 128]] [482, 2, [2, 240], [8, 60], [4, 120]] [542, 2, [2, 270], [4, 135], [5, 108]] [632, 2, [2, 315], [3, 210], [6, 105]] [674, 2, [4, 168], [7, 96], [6, 112]] [842, 2, [2, 420], [4, 210], [8, 105]] [938, 2, [8, 117], [3, 312], [9, 104]] |
|
Nombre divisibles par ses chiffres
mod 3 Nombre qui divisé par chacun de ses chiffres
produit un reste égal à 3. Chiffres distincts et hors 0 et 1. |
[3, 3, [3, 0]] [39, 3, [9, 4], [3, 12]] [63, 3, [3, 20], [6, 10]] [93, 3, [3, 30], [9, 10]] [243, 3, [3, 80], [4, 60], [2, 120]] [423, 3, [3, 140], [2, 210], [4, 105]] [483, 3, [3, 160], [8, 60], [4, 120]] [543, 3, [3, 180], [4, 135], [5, 108]] [843, 3, [3, 280], [4, 210], [8, 105]] [2397, 3, [7, 342], [9, 266], [3, 798], [2,
1197]] [2463, 3, [3, 820], [6, 410], [4, 615], [2,
1230]] [2643, 3, [3, 880], [4, 660], [6, 440], [2,
1320]] [3279, 3, [9, 364], [7, 468], [2, 1638], [3,
1092]] [3867, 3, [7, 552], [6, 644], [8, 483], [3,
1288]] [4263, 3, [3, 1420], [6, 710], [2, 2130], [4,
1065]] [4563, 3, [3, 1520], [6, 760], [5, 912], [4,
1140]] [4623, 3, [3, 1540], [2, 2310], [6, 770], [4,
1155]] [4683, 3, [3, 1560], [8, 585], [6, 780], [4,
1170]] [5283, 3, [3, 1760], [8, 660], [2, 2640], [5,
1056]] |
|
Jusqu'à 1000, on donne les nombres à chiffres
distincts hors 0 et 1 divisibles par ses chiffres avec un reste égal à k, ce paramètre
k variant de 0 à 9. On donne le nombre, le reste et les couple
[diviseur, quotient] Exemple: 386 = 3 × 128 + 2 = 8 × 48 + 2 = 2 = 6 × 64 + 2 |
||
[23, 5, [3, 6], [2, 9]] [24, 0, [4, 6], [2, 12]] Nombre qui divisé par chacun
de ses chiffres produit un reste d'une unité par 4 et 2, reste 0 [24, 4, [4, 5], [2, 10]] – divisé par 4
et 2, reste 4 [24, 8, [4, 4], [2, 8]] – divisé par 4 et 2, reste 8 [25, 5, [5, 4], [2, 10]] [26, 2, [6, 4],
[2, 12]] [26, 8, [6, 3],
[2, 9]] [28, 4, [8, 3], [2, 12]] [32, 2, [2, 15],
[3, 10]] [32, 8, [2, 12],
[3, 8]] [35, 5, [5, 6], [3, 10]] [36, 0, [6, 6],
[3, 12]] [36, 6, [6, 5],
[3, 10]] [39, 3, [9, 4], [3, 12]] [42, 2, [2, 20],
[4, 10]] [42, 6, [2, 18],
[4, 9]] [43, 7, [3, 12], [4, 9]] [45, 5, [5, 8], [4, 10]] [48, 0, [8, 6],
[4, 12]] [48, 8, [8, 5],
[4, 10]] [52, 2, [2, 25], [5, 10]] [53, 8, [3, 15], [5, 9]] [62, 2, [2, 30],
[6, 10]] [62, 8, [2, 27],
[6, 9]] [63, 3, [3, 20],
[6, 10]] – rare impair [63, 9, [3, 18],
[6, 9]] – représenté
deux fois [64, 4, [4, 15], [6, 10]] [65, 5, [5, 12], [6, 10]] [72, 2, [2, 35], [7, 10]] [75, 5, [5, 14], [7, 10]] [82, 2, [2, 40], [8, 10]] [84, 4, [4, 20], [8, 10]] [85, 5, [5, 16], [8, 10]] [92, 2, [2, 45], [9, 10]] [93, 3, [3, 30], [9, 10]] [95, 5, [5, 18], [9, 10]] [96, 6, [6, 15], [9, 10]] [234, 6, [4, 57], [3, 76], [2, 114]] [236, 2, [6,
39], [3, 78], [2, 117]] [236, 8, [6,
38], [3, 76], [2, 114]] [239, 5, [9, 26], [3, 78], [2, 117]] [243, 3, [3, 80], [4, 60], [2, 120]] [245, 5, [5, 48], [4, 60], [2, 120]] [246, 6, [6, 40], [4, 60], [2, 120]] [248, 0, [8,
31], [4, 62], [2, 124]] [248, 8, [8,
30], [4, 60], [2, 120]] [263, 5, [3, 86], [6, 43], [2, 129]] [264, 0, [4, 66], [6, 44], [2, 132]] [268, 4, [8, 33], [6, 44], [2, 132]] [284, 4, [4, 70], [8, 35], [2, 140]] [285, 5, [5, 56], [8, 35], [2, 140]] [287, 7, [7, 40], [8, 35], [2, 140]] [289, 1, [9, 32], [8, 36], [2, 144]] [293, 5, [3, 96], [9, 32], [2, 144]] [294, 6, [4, 72], [9, 32], [2, 144]] [296, 8, [6, 48], [9, 32], [2, 144]] [324, 0, [4, 81], [2, 162], [3, 108]] [326, 2, [6,
54], [2, 162], [3, 108]] [326, 8, [6,
53], [2, 159], [3, 106]] [329, 5, [9, 36], [2, 162], [3, 108]] [342, 6, [2, 168], [4, 84], [3, 112]] [362, 2, [2,
180], [6, 60], [3, 120]] [362, 8, [2,
177], [6, 59], [3, 118]] [364, 4, [4, 90], [6, 60], [3, 120]] [365, 5, [5, 72], [6, 60], [3, 120]] [368, 8, [8, 45], [6, 60], [3, 120]] [369, 9, [9, 40], [6, 60], [3, 120]] [379, 1, [9, 42], [7, 54], [3, 126]] [384, 0, [4, 96], [8, 48], [3, 128]] |
[386, 2, [6, 64], [8, 48], [3, 128]] [396, 0, [6, 66], [9, 44], [3, 132]] [423, 3, [3, 140], [2, 210], [4, 105]] [425, 5, [5, 84], [2, 210], [4, 105]] [426, 6, [6, 70], [2, 210], [4, 105]] [427, 7, [7, 60], [2, 210], [4, 105]] [428, 4, [8, 53], [2, 212], [4, 106]] [432, 0, [2, 216], [3, 144], [4, 108]] [436, 4, [6, 72], [3, 144], [4, 108]] [438, 6, [8, 54], [3, 144], [4, 108]] [439, 7, [9, 48], [3, 144], [4, 108]] [462, 6, [2, 228], [6, 76], [4, 114]] [463, 7, [3, 152], [6, 76], [4, 114]] [469, 1, [9, 52], [6, 78], [4, 117]] [482, 2, [2, 240], [8, 60], [4, 120]] [483, 3, [3, 160], [8, 60], [4, 120]] [485, 5, [5, 96], [8, 60], [4, 120]] [486, 6, [6, 80], [8, 60], [4, 120]] [524, 4, [4, 130], [2, 260], [5, 104]] [528, 8, [8, 65], [2, 260], [5, 104]] [542, 2, [2, 270], [4, 135], [5, 108]] [543, 3, [3, 180], [4, 135], [5, 108]] [546, 6, [6, 90], [4, 135], [5, 108]] [549, 9, [9, 60], [4, 135], [5, 108]] [593, 8, [3, 195], [9, 65], [5, 117]] [623, 5, [3, 206], [2, 309], [6, 103]] [624, 0, [4, 156], [2, 312], [6, 104]] [628, 4, [8, 78], [2, 312], [6, 104]] [632, 2, [2,
315], [3, 210], [6, 105]] [632, 8, [2,
312], [3, 208], [6, 104]] [635, 5, [5, 126], [3, 210], [6, 105]] [637, 7, [7, 90], [3, 210], [6, 105]] [639, 9, [9, 70], [3, 210], [6, 105]] [642, 6, [2, 318], [4, 159], [6, 106]] [643, 7, [3, 212], [4, 159], [6, 106]] [648, 0, [8, 81], [4, 162], [6, 108]] [649, 1, [9, 72], [4, 162], [6, 108]] [672, 0, [2, 336], [7, 96], [6, 112]] [673, 1, [3, 224], [7, 96], [6, 112]] [674, 2, [4, 168], [7, 96], [6, 112]] [678, 6, [8, 84], [7, 96], [6, 112]] [692, 8, [2, 342], [9, 76], [6, 114]] [693, 9, [3, 228], [9, 76], [6, 114]] [723, 9, [3, 238], [2, 357], [7, 102]] [728, 0, [8, 91], [2, 364], [7, 104]] [735, 0, [5, 147], [3, 245], [7, 105]] [762, 6, [2, 378], [6, 126], [7, 108]] [763, 7, [3, 252], [6, 126], [7, 108]] [764, 8, [4, 189], [6, 126], [7, 108]] [784, 0, [4, 196], [8, 98], [7, 112]] [823, 7, [3, 272], [2, 408], [8, 102]] [824, 0, [4,
206], [2, 412], [8, 103]] [824, 8, [4,
204], [2, 408], [8, 102]] [842, 2, [2, 420], [4, 210], [8, 105]] [843, 3, [3, 280], [4, 210], [8, 105]] [845, 5, [5, 168], [4, 210], [8, 105]] [846, 6, [6, 140], [4, 210], [8, 105]] [847, 7, [7, 120], [4, 210], [8, 105]] [864, 0, [4, 216], [6, 144], [8, 108]] [869, 5, [9, 96], [6, 144], [8, 108]] [923, 5, [3, 306], [2, 459], [9, 102]] [926, 8, [6, 153], [2, 459], [9, 102]] [936, 0, [6, 156], [3, 312], [9, 104]] [938, 2, [8, 117], [3, 312], [9, 104]] [942, 6, [2, 468], [4, 234], [9, 104]] [943, 7, [3, 312], [4, 234], [9, 104]] [953, 8, [3, 315], [5, 189], [9, 105]] [962, 8, [2, 477], [6, 159], [9, 106]] [963, 9, [3, 318], [6, 159], [9, 106]] |
|
Haut de page (ou
double-clic)
Retour |
|
|
|
|
|
Cette page |
http://villemin.gerard.free.fr/Wwwgvmm/Decompos/Divchiff.htm
|