|
Nombres têtus Nombres premiers longs Nombres à permutation circulaire Définition Nombre premier dont l'inverse a un
développement décimal périodique de période
maximale. |
Voir Nombres premiers
longs – Développements
Nombres premiers
longs – Critère de détection
Anglais: Full Reptend Prime
Liste jusqu'à 3000 |
|
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499 503 509 541 571 577 593 619 647 659 701 709 727 743 811 821 823 857 863 887 937 941 953 971 977 983 1019 1021 1033 1051 1063 1069 1087 1091 1097 1103 1109 1153 1171 1181 1193 1217 1223 1229 1259 1291 1297 1301 1303 1327 1367 1381 1429 1433 1447 1487 1531 1543 1549 1553 1567 1571 1579 1583 1607 1619 1621 1663 1697 1709 1741 1777 1783 1789 1811 1823 1847 1861 1873 1913 1949 1979 2017 2029 2063 2069 2099 2113 2137 2141 2143 2153 2179 2207 2221 2251 2269 2273 2297 2309 2339 2341 2371 2383 2389 2411 2417 2423 2447 2459 2473 2539 2543 2549 2579 2593 2617 2621 2633 2657 2663 2687 2699 2713 2731 2741 2753 2767 2777 2789 2819 2833 2851 2861 2887 2897 2903 2909 2927 2939 2971 3011 3019 3023 3137 …
En rouge, les premiers logs jumeaux. |
Voir Analyse dichotomique des
quelques premiers longs
|
|
N Quantité Cumul de
premiers de P. longs % de premiers de P. longs % 100 25 9 36% 25 9 36,0% 200 21 8 38% 46 17 37,0% 300 16 6 38% 62 23 37,1% 400 16 6 38% 78 29 37,2% 500 17 6 35% 95 35 36,8% 600 14 6 43% 109 41 37,6% 700 16 3 19% 125 44 35,2% 800 14 4 29% 139 48 34,5% 900 15 6 40% 154 54 35,1% 1000 14 6 43% 168 60 35,7% 2000 135 56 41% 303 116 38,3% 3000 127 59 46% 430 175 40,7% 4000 120 43 36% 550 218 39,6% 5000 119 40 34% 669 258 38,6% 6000 114 44 39% 783 302 38,6% 7000 117 47 40% 900 349 38,8% 8000 107 41 38% 1007 390 38,7% 9000 110 41 37% 1117 431 38,6% 10000 112 36 32% 1229 467 38,0% Lecture: pour N de 0 à 100, il y a 25 nombres premiers
et 9 premiers longs. Pour N de 100 à 200, il y a 21 nombres premiers et 9
premiers longs. Soit un cumul pour N de 0 à 200 de 46 premiers et 17 longs. |
|
|
La période est donnée entre
crochets.
Exemple de lecture: 1 / 7 = 142857 142857 … Cette
ligne est en rouge car la longueur de la période est 6 qui vaut 7 – 1. 7, [1, 4,
2, 8, 5, 7] 11, [0, 9]) 13, [0, 7, 6,
9, 2, 3] 17, [0, 5,
8, 8, 2, 3, 5, 2, 9, 4, 1, 1, 7, 6, 4, 7] 19, [0, 5,
2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1] 23, [0, 4,
3, 4, 7, 8, 2, 6, 0, 8, 6, 9, 5, 6, 5, 2, 1, 7, 3, 9, 1, 3] 29, [0, 3,
4, 4, 8, 2, 7, 5, 8, 6, 2, 0, 6, 8, 9, 6, 5, 5, 1, 7, 2, 4, 1, 3, 7, 9, 3, 1] 31, [0, 3, 2,
2, 5, 8, 0, 6, 4, 5, 1, 6, 1, 2, 9] 37, [0, 2, 7] 41, [0, 2, 4,
3, 9] 43, [0, 2, 3,
2, 5, 5, 8, 1, 3, 9, 5, 3, 4, 8, 8, 3, 7, 2, 0, 9, 3] 47, [0, 2,
1, 2, 7, 6, 5, 9, 5, 7, 4, 4, 6, 8, 0, 8, 5, 1, 0, 6, 3, 8, 2, 9, 7, 8, 7, 2,
3, 4, 0, 4, 2, 5, 5, 3, 1, 9, 1, 4, 8, 9, 3, 6, 1, 7] 53, [0, 1, 8,
8, 6, 7, 9, 2, 4, 5, 2, 8, 3] 59, [0, 1,
6, 9, 4, 9, 1, 5, 2, 5, 4, 2, 3, 7, 2, 8, 8, 1, 3, 5, 5, 9, 3, 2, 2, 0, 3, 3,
8, 9, 8, 3, 0, 5, 0, 8, 4, 7, 4, 5, 7, 6, 2, 7, 1, 1, 8, 6, 4, 4, 0, 6, 7, 7,
9, 6, 6, 1] 61, [0, 1,
6, 3, 9, 3, 4, 4, 2, 6, 2, 2, 9, 5, 0, 8, 1, 9, 6, 7, 2, 1, 3, 1, 1, 4, 7, 5,
4, 0, 9, 8, 3, 6, 0, 6, 5, 5, 7, 3, 7, 7, 0, 4, 9, 1, 8, 0, 3, 2, 7, 8, 6, 8,
8, 5, 2, 4, 5, 9] 67, [0, 1, 4,
9, 2, 5, 3, 7, 3, 1, 3, 4, 3, 2, 8, 3, 5, 8, 2, 0, 8, 9, 5, 5, 2, 2, 3, 8, 8,
0, 5, 9, 7] 71, [0, 1, 4,
0, 8, 4, 5, 0, 7, 0, 4, 2, 2, 5, 3, 5, 2, 1, 1, 2, 6, 7, 6, 0, 5, 6, 3, 3, 8,
0, 2, 8, 1, 6, 9] 73, [0, 1, 3, 6,
9, 8, 6, 3] 79, [0, 1, 2,
6, 5, 8, 2, 2, 7, 8, 4, 8, 1] 83, [0, 1, 2,
0, 4, 8, 1, 9, 2, 7, 7, 1, 0, 8, 4, 3, 3, 7, 3, 4, 9, 3, 9, 7, 5, 9, 0, 3, 6,
1, 4, 4, 5, 7, 8, 3, 1, 3, 2, 5, 3] 89, [0, 1, 1,
2, 3, 5, 9, 5, 5, 0, 5, 6, 1, 7, 9, 7, 7, 5, 2, 8, 0, 8, 9, 8, 8, 7, 6, 4, 0,
4, 4, 9, 4, 3, 8, 2, 0, 2, 2, 4, 7, 1, 9, 1] 97, [0, 1,
0, 3, 0, 9, 2, 7, 8, 3, 5, 0, 5, 1, 5, 4, 6, 3, 9, 1, 7, 5, 2, 5, 7, 7, 3, 1,
9, 5, 8, 7, 6, 2, 8, 8, 6, 5, 9, 7, 9, 3, 8, 1, 4, 4, 3, 2, 9, 8, 9, 6, 9, 0,
7, 2, 1, 6, 4, 9, 4, 8, 4, 5, 3, 6, 0, 8, 2, 4, 7, 4, 2, 2, 6, 8, 0, 4, 1, 2,
3, 7, 1, 1, 3, 4, 0, 2, 0, 6, 1, 8, 5, 5, 6, 7] |
SUITE de 100 à 200 |
|
101, [0, 0, 9,
9] 103, [0, 0, 9,
7, 0, 8, 7, 3, 7, 8, 6, 4, 0, 7, 7, 6, 6, 9, 9, 0, 2, 9, 1, 2, 6, 2, 1, 3, 5,
9, 2, 2, 3, 3] 107, [0, 0, 9, 3,
4, 5, 7, 9, 4, 3, 9, 2, 5, 2, 3, 3, 6, 4, 4, 8, 5, 9, 8, 1, 3, 0, 8, 4, 1, 1,
2, 1, 4, 9, 5, 3, 2, 7, 1, 0, 2, 8, 0, 3, 7, 3, 8, 3, 1, 7, 7, 5, 7] 109, [0, 0,
9, 1, 7, 4, 3, 1, 1, 9, 2, 6, 6, 0, 5, 5, 0, 4, 5, 8, 7, 1, 5, 5, 9, 6, 3, 3,
0, 2, 7, 5, 2, 2, 9, 3, 5, 7, 7, 9, 8, 1, 6, 5, 1, 3, 7, 6, 1, 4, 6, 7, 8, 8,
9, 9, 0, 8, 2, 5, 6, 8, 8, 0, 7, 3, 3, 9, 4, 4, 9, 5, 4, 1, 2, 8, 4, 4, 0, 3,
6, 6, 9, 7, 2, 4, 7, 7, 0, 6, 4, 2, 2, 0, 1, 8, 3, 4, 8, 6, 2, 3, 8, 5, 3, 2,
1, 1] 113, [0, 0,
8, 8, 4, 9, 5, 5, 7, 5, 2, 2, 1, 2, 3, 8, 9, 3, 8, 0, 5, 3, 0, 9, 7, 3, 4, 5,
1, 3, 2, 7, 4, 3, 3, 6, 2, 8, 3, 1, 8, 5, 8, 4, 0, 7, 0, 7, 9, 6, 4, 6, 0, 1,
7, 6, 9, 9, 1, 1, 5, 0, 4, 4, 2, 4, 7, 7, 8, 7, 6, 1, 0, 6, 1, 9, 4, 6, 9, 0,
2, 6, 5, 4, 8, 6, 7, 2, 5, 6, 6, 3, 7, 1, 6, 8, 1, 4, 1, 5, 9, 2, 9, 2, 0, 3,
5, 3, 9, 8, 2, 3] 127, [0, 0, 7,
8, 7, 4, 0, 1, 5, 7, 4, 8, 0, 3, 1, 4, 9, 6, 0, 6, 2, 9, 9, 2, 1, 2, 5, 9, 8,
4, 2, 5, 1, 9, 6, 8, 5, 0, 3, 9, 3, 7] 131, [0, 0,
7, 6, 3, 3, 5, 8, 7, 7, 8, 6, 2, 5, 9, 5, 4, 1, 9, 8, 4, 7, 3, 2, 8, 2, 4, 4,
2, 7, 4, 8, 0, 9, 1, 6, 0, 3, 0, 5, 3, 4, 3, 5, 1, 1, 4, 5, 0, 3, 8, 1, 6, 7,
9, 3, 8, 9, 3, 1, 2, 9, 7, 7, 0, 9, 9, 2, 3, 6, 6, 4, 1, 2, 2, 1, 3, 7, 4, 0,
4, 5, 8, 0, 1, 5, 2, 6, 7, 1, 7, 5, 5, 7, 2, 5, 1, 9, 0, 8, 3, 9, 6, 9, 4, 6,
5, 6, 4, 8, 8, 5, 4, 9, 6, 1, 8, 3, 2, 0, 6, 1, 0, 6, 8, 7, 0, 2, 2, 9] 137, [0, 0, 7,
2, 9, 9, 2, 7] 139, [0, 0, 7,
1, 9, 4, 2, 4, 4, 6, 0, 4, 3, 1, 6, 5, 4, 6, 7, 6, 2, 5, 8, 9, 9, 2, 8, 0, 5,
7, 5, 5, 3, 9, 5, 6, 8, 3, 4, 5, 3, 2, 3, 7, 4, 1] 149, [0, 0,
6, 7, 1, 1, 4, 0, 9, 3, 9, 5, 9, 7, 3, 1, 5, 4, 3, 6, 2, 4, 1, 6, 1, 0, 7, 3,
8, 2, 5, 5, 0, 3, 3, 5, 5, 7, 0, 4, 6, 9, 7, 9, 8, 6, 5, 7, 7, 1, 8, 1, 2, 0,
8, 0, 5, 3, 6, 9, 1, 2, 7, 5, 1, 6, 7, 7, 8, 5, 2, 3, 4, 8, 9, 9, 3, 2, 8, 8,
5, 9, 0, 6, 0, 4, 0, 2, 6, 8, 4, 5, 6, 3, 7, 5, 8, 3, 8, 9, 2, 6, 1, 7, 4, 4,
9, 6, 6, 4, 4, 2, 9, 5, 3, 0, 2, 0, 1, 3, 4, 2, 2, 8, 1, 8, 7, 9, 1, 9, 4, 6,
3, 0, 8, 7, 2, 4, 8, 3, 2, 2, 1, 4, 7, 6, 5, 1] 151, [0, 0, 6,
6, 2, 2, 5, 1, 6, 5, 5, 6, 2, 9, 1, 3, 9, 0, 7, 2, 8, 4, 7, 6, 8, 2, 1, 1, 9,
2, 0, 5, 2, 9, 8, 0, 1, 3, 2, 4, 5, 0, 3, 3, 1, 1, 2, 5, 8, 2, 7, 8, 1, 4, 5,
6, 9, 5, 3, 6, 4, 2, 3, 8, 4, 1, 0, 5, 9, 6, 0, 2, 6, 4, 9] 157, [0, 0, 6,
3, 6, 9, 4, 2, 6, 7, 5, 1, 5, 9, 2, 3, 5, 6, 6, 8, 7, 8, 9, 8, 0, 8, 9, 1, 7,
1, 9, 7, 4, 5, 2, 2, 2, 9, 2, 9, 9, 3, 6, 3, 0, 5, 7, 3, 2, 4, 8, 4, 0, 7, 6,
4, 3, 3, 1, 2, 1, 0, 1, 9, 1, 0, 8, 2, 8, 0, 2, 5, 4, 7, 7, 7, 0, 7] 163, [0, 0, 6,
1, 3, 4, 9, 6, 9, 3, 2, 5, 1, 5, 3, 3, 7, 4, 2, 3, 3, 1, 2, 8, 8, 3, 4, 3, 5,
5, 8, 2, 8, 2, 2, 0, 8, 5, 8, 8, 9, 5, 7, 0, 5, 5, 2, 1, 4, 7, 2, 3, 9, 2, 6,
3, 8, 0, 3, 6, 8, 0, 9, 8, 1, 5, 9, 5, 0, 9, 2, 0, 2, 4, 5, 3, 9, 8, 7, 7, 3] 167, [0, 0,
5, 9, 8, 8, 0, 2, 3, 9, 5, 2, 0, 9, 5, 8, 0, 8, 3, 8, 3, 2, 3, 3, 5, 3, 2, 9,
3, 4, 1, 3, 1, 7, 3, 6, 5, 2, 6, 9, 4, 6, 1, 0, 7, 7, 8, 4, 4, 3, 1, 1, 3, 7,
7, 2, 4, 5, 5, 0, 8, 9, 8, 2, 0, 3, 5, 9, 2, 8, 1, 4, 3, 7, 1, 2, 5, 7, 4, 8,
5, 0, 2, 9, 9, 4, 0, 1, 1, 9, 7, 6, 0, 4, 7, 9, 0, 4, 1, 9, 1, 6, 1, 6, 7, 6,
6, 4, 6, 7, 0, 6, 5, 8, 6, 8, 2, 6, 3, 4, 7, 3, 0, 5, 3, 8, 9, 2, 2, 1, 5, 5,
6, 8, 8, 6, 2, 2, 7, 5, 4, 4, 9, 1, 0, 1, 7, 9, 6, 4, 0, 7, 1, 8, 5, 6, 2, 8,
7, 4, 2, 5, 1, 4, 9, 7] 173, [0, 0, 5,
7, 8, 0, 3, 4, 6, 8, 2, 0, 8, 0, 9, 2, 4, 8, 5, 5, 4, 9, 1, 3, 2, 9, 4, 7, 9,
7, 6, 8, 7, 8, 6, 1, 2, 7, 1, 6, 7, 6, 3] 179, [0, 0,
5, 5, 8, 6, 5, 9, 2, 1, 7, 8, 7, 7, 0, 9, 4, 9, 7, 2, 0, 6, 7, 0, 3, 9, 1, 0,
6, 1, 4, 5, 2, 5, 1, 3, 9, 6, 6, 4, 8, 0, 4, 4, 6, 9, 2, 7, 3, 7, 4, 3, 0, 1,
6, 7, 5, 9, 7, 7, 6, 5, 3, 6, 3, 1, 2, 8, 4, 9, 1, 6, 2, 0, 1, 1, 1, 7, 3, 1,
8, 4, 3, 5, 7, 5, 4, 1, 8, 9, 9, 4, 4, 1, 3, 4, 0, 7, 8, 2, 1, 2, 2, 9, 0, 5,
0, 2, 7, 9, 3, 2, 9, 6, 0, 8, 9, 3, 8, 5, 4, 7, 4, 8, 6, 0, 3, 3, 5, 1, 9, 5,
5, 3, 0, 7, 2, 6, 2, 5, 6, 9, 8, 3, 2, 4, 0, 2, 2, 3, 4, 6, 3, 6, 8, 7, 1, 5,
0, 8, 3, 7, 9, 8, 8, 8, 2, 6, 8, 1, 5, 6, 4, 2, 4, 5, 8, 1] 181, [0, 0,
5, 5, 2, 4, 8, 6, 1, 8, 7, 8, 4, 5, 3, 0, 3, 8, 6, 7, 4, 0, 3, 3, 1, 4, 9, 1,
7, 1, 2, 7, 0, 7, 1, 8, 2, 3, 2, 0, 4, 4, 1, 9, 8, 8, 9, 5, 0, 2, 7, 6, 2, 4,
3, 0, 9, 3, 9, 2, 2, 6, 5, 1, 9, 3, 3, 7, 0, 1, 6, 5, 7, 4, 5, 8, 5, 6, 3, 5,
3, 5, 9, 1, 1, 6, 0, 2, 2, 0, 9, 9, 4, 4, 7, 5, 1, 3, 8, 1, 2, 1, 5, 4, 6, 9,
6, 1, 3, 2, 5, 9, 6, 6, 8, 5, 0, 8, 2, 8, 7, 2, 9, 2, 8, 1, 7, 6, 7, 9, 5, 5,
8, 0, 1, 1, 0, 4, 9, 7, 2, 3, 7, 5, 6, 9, 0, 6, 0, 7, 7, 3, 4, 8, 0, 6, 6, 2,
9, 8, 3, 4, 2, 5, 4, 1, 4, 3, 6, 4, 6, 4, 0, 8, 8, 3, 9, 7, 7, 9] 191, [0, 0, 5,
2, 3, 5, 6, 0, 2, 0, 9, 4, 2, 4, 0, 8, 3, 7, 6, 9, 6, 3, 3, 5, 0, 7, 8, 5, 3,
4, 0, 3, 1, 4, 1, 3, 6, 1, 2, 5, 6, 5, 4, 4, 5, 0, 2, 6, 1, 7, 8, 0, 1, 0, 4,
7, 1, 2, 0, 4, 1, 8, 8, 4, 8, 1, 6, 7, 5, 3, 9, 2, 6, 7, 0, 1, 5, 7, 0, 6, 8,
0, 6, 2, 8, 2, 7, 2, 2, 5, 1, 3, 0, 8, 9]) 193, [0, 0,
5, 1, 8, 1, 3, 4, 7, 1, 5, 0, 2, 5, 9, 0, 6, 7, 3, 5, 7, 5, 1, 2, 9, 5, 3, 3,
6, 7, 8, 7, 5, 6, 4, 7, 6, 6, 8, 3, 9, 3, 7, 8, 2, 3, 8, 3, 4, 1, 9, 6, 8, 9,
1, 1, 9, 1, 7, 0, 9, 8, 4, 4, 5, 5, 9, 5, 8, 5, 4, 9, 2, 2, 2, 7, 9, 7, 9, 2,
7, 4, 6, 1, 1, 3, 9, 8, 9, 6, 3, 7, 3, 0, 5, 6, 9, 9, 4, 8, 1, 8, 6, 5, 2, 8,
4, 9, 7, 4, 0, 9, 3, 2, 6, 4, 2, 4, 8, 7, 0, 4, 6, 6, 3, 2, 1, 2, 4, 3, 5, 2,
3, 3, 1, 6, 0, 6, 2, 1, 7, 6, 1, 6, 5, 8, 0, 3, 1, 0, 8, 8, 0, 8, 2, 9, 0, 1,
5, 5, 4, 4, 0, 4, 1, 4, 5, 0, 7, 7, 7, 2, 0, 2, 0, 7, 2, 5, 3, 8, 8, 6, 0, 1,
0, 3, 6, 2, 6, 9, 4, 3] 197, [0, 0, 5,
0, 7, 6, 1, 4, 2, 1, 3, 1, 9, 7, 9, 6, 9, 5, 4, 3, 1, 4, 7, 2, 0, 8, 1, 2, 1,
8, 2, 7, 4, 1, 1, 1, 6, 7, 5, 1, 2, 6, 9, 0, 3, 5, 5, 3, 2, 9, 9, 4, 9, 2, 3,
8, 5, 7, 8, 6, 8, 0, 2, 0, 3, 0, 4, 5, 6, 8, 5, 2, 7, 9, 1, 8, 7, 8, 1, 7, 2,
5, 8, 8, 8, 3, 2, 4, 8, 7, 3, 0, 9, 6, 4, 4, 6, 7] 199, [0, 0, 5,
0, 2, 5, 1, 2, 5, 6, 2, 8, 1, 4, 0, 7, 0, 3, 5, 1, 7, 5, 8, 7, 9, 3, 9, 6, 9,
8, 4, 9, 2, 4, 6, 2, 3, 1, 1, 5, 5, 7, 7, 8, 8, 9, 4, 4, 7, 2, 3, 6, 1, 8, 0,
9, 0, 4, 5, 2, 2, 6, 1, 3, 0, 6, 5, 3, 2, 6, 6, 3, 3, 1, 6, 5, 8, 2, 9, 1, 4,
5, 7, 2, 8, 6, 4, 3, 2, 1, 6, 0, 8, 0, 4, 0, 2, 0, 1] |
Voir |
|
Aussi |
|
Sites |
OEIS A001913 -
Full reptend primes: primes with primitive root 10. Full Reptend Prime
– Wolfram MathWorld |
Cette page |